A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism

Author:

Guo YangORCID,Yang Hongbo,Guo Tao,Pan Jiahua,Wang Weilian

Abstract

Abstract Objective. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance. Approach. In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features. Main results. An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method. Significance. The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.

Funder

Major Science and Technology Projects of Yunnan Province

National Natural Science Foundation of China

Applied Basic Research Foundation of Yunnan Province

Publisher

IOP Publishing

Subject

General Nursing

Reference39 articles.

1. S1 and S2 heart sound segmentation using variational mode decomposition;Babu,2017

2. Automatic recognition of fundamental heart sound segments from PCG corrupted with lung sounds and speech;Babu;IEEE Access,2020

3. Segmentation and detection of first and second heart sounds (S1 and S2) using variational mode decomposition;Banerjee,2016

4. Classification of heart sounds using discrete time-frequency energy feature based on S transform and the wavelet threshold denoising;Chen;Biomed. Signal Process. Control,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3