Simulation and pre-planning omitted radiotherapy (SPORT): a feasibility study for prostate cancer

Author:

Zhuang TingliangORCID,Parsons David,Desai Neil,Gibbard Grant,Keilty Dana,Lin Mu-Han,Cai Bin,Nguyen DanORCID,Chiu Tsuicheng,Godley Andrew,Pompos Arnold,Jiang Steve

Abstract

Abstract This study explored the feasibility of on-couch intensity modulated radiotherapy (IMRT) planning for prostate cancer (PCa) on a cone-beam CT (CBCT)-based online adaptive RT platform without an individualized pre-treatment plan and contours. Ten patients with PCa previously treated with image-guided IMRT (60 Gy/20 fractions) were selected. In contrast to the routine online adaptive RT workflow, a novel approach was employed in which the same preplan that was optimized on one reference patient was adapted to generate individual on-couch/initial plans for the other nine test patients using Ethos emulator. Simulation CTs of the test patients were used as simulated online CBCT (sCBCT) for emulation. Quality assessments were conducted on synthetic CTs (sCT). Dosimetric comparisons were performed between on-couch plans, on-couch plans recomputed on the sCBCT and individually optimized plans for test patients. The median value of mean absolute difference between sCT and sCBCT was 74.7 HU (range 69.5–91.5 HU). The average CTV/PTV coverage by prescription dose was 100.0%/94.7%, and normal tissue constraints were met for the nine test patients in on-couch plans on sCT. Recalculating on-couch plans on the sCBCT showed about 0.7% reduction of PTV coverage and a 0.6% increasing of hotspot, and the dose difference of the OARs was negligible (<0.5 Gy). Hence, initial IMRT plans for new patients can be generated by adapting a reference patient’s preplan with online contours, which had similar qualities to the conventional approach of individually optimized plan on the simulation CT. Further study is needed to identify selection criteria for patient anatomy most amenable to this workflow.

Publisher

IOP Publishing

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3