Abstract
Abstract
To date, a myriad of neural microelectrodes has been meticulously developed, but the focus of existing literature predominantly revolves around fabrication methodologies rather than delving into the reconditioning processes or strategies for salvaging electrodes exhibiting diminished performance due to material failure. This study aims to elucidate the underlying factors contributing to the degradation in performance of neural microelectrodes. Additionally, it introduces a comprehensive, cost-effective protocol for the reconditioning and repurposing of electrodes afflicted by material failure, tailored for a broad spectrum of electrode types. The efficacy of the proposed reconditioning protocol is substantiated through experimental validation on single-site tungsten microelectrodes. The results of neural signal recording unequivocally demonstrate the successful restoration of a substantial number of electrodes, underscoring the protocol’s effectiveness.