Stereotactic Optimized Automated Radiotherapy (SOAR): a novel automated planning solution for multi-metastatic SRS compared to HyperArc™

Author:

Mann ThomasORCID,Ploquin Nicolas,Faruqi Salman,Loewen Shaun,Thind Kundan

Abstract

Abstract Objective. Automated Stereotactic Radiosurgery (SRS) planning solutions improve clinical efficiency and reduce treatment plan variability. Available commercial solutions employ a template-based strategy that may not be optimal for all SRS patients. This study compares a novel beam angle optimized Volumetric Modulated Arc Therapy (VMAT) planning solution for multi-metastatic SRS to the commercial solution HyperArc. Approach. Stereotactic Optimized Automated Radiotherapy (SOAR) performs automated plan creation by combining collision prediction, beam angle optimization, and dose optimization to produce individualized high-quality SRS plans using Eclipse Scripting. In this retrospective study 50 patients were planned using SOAR and HyperArc. Assessed dose metrics included the Conformity Index (CI), Gradient Index (GI), and doses to organs-at-risk. Complexity metrics evaluated the modulation, gantry speed, and dose rate complexity. Plan dosimetric quality, and complexity were compared using double-sided Wilcoxon signed rank tests (α = 0.05) adjusted for multiple comparisons. Main Results. The median target CI was 0.82 with SOAR and 0.79 with HyperArc (p < .001). Median GI was 1.85 for SOAR and 1.68 for HyperArc (p < .001). The median V12Gy normal brain volume for SOAR and HyperArc were 7.76 cm3 and 7.47 cm3 respectively. Median doses to the eyes, lens, optic nerves, and optic chiasm were statistically significant favoring SOAR. The SOAR algorithm scored lower for all complexity metrics assessed. Significance. In-house developed automated planning solutions are a viable alternative to commercial solutions. SOAR designs high-quality patient-specific SRS plans with a greater degree of versatility than template-based methods.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3