Organ absorbed doses in the IORT treatment of breast cancer with the INTRABEAM device: a Monte-Carlo study

Author:

Nasir ZulfaORCID,Probst Luis,Schneider Frank,Clausen Sven,Bürgy Daniel,Glatting Gerhard,Nwankwo Obioma

Abstract

Abstract Purpose: The current prescription and the assessment of the delivered absorbed dose in intraoperative radiation therapy (IORT) with the INTRABEAM system rely mainly on depth-dose measurements in water. The accuracy of this approach is limited because tissue heterogeneity is ignored. It is also difficult to accurately determine the dose delivered to the patient experimentally as the steep dose gradient is highly sensitive to geometric errors. Our goal is to determine the dose to the target volume and the organs at risk of a clinical breast cancer patient from treatment with the system. Methods: A homogeneous water-equivalent CT dataset was derived from the preoperative CT scan of a patient by setting all materials in the patient volume as water-equivalent. This homogeneous CT data represents the current assumption of a homogenous patient, while the original CT data is considered the ground truth. An in-house Monte Carlo algorithm was used to simulate the delivered dose in both setups for a prescribed treatment dose of 20 Gy to the surface of the 3.5 cm diameter spherical applicator. Results: The doses received by 2% (D2%) of the target volume for the homogeneous and heterogeneous geometries are 16.26 Gy and 9.33 Gy, respectively. The D2% for the heart are 0.035 Gy and 0.119 Gy for the homogeneous and heterogeneous geometries, respectively. This trend is also observed for the other organs at risk. Conclusions: The assumption of a homogeneous patient overestimates the dose to the target volume and underestimates the doses to the organs at risk.

Funder

The LPDP scholarship (The Indonesia Endowment Fund for Education) from the Ministry of Finance of the Republic of Indonesia

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3