Breast tumor parameter estimation and interactive 3D thermal tomography using discrete thermal sensor data

Author:

Antony Linta,Arathy K,Sudarsan NimmiORCID,Muralidharan M N,Ansari SeemaORCID

Abstract

Abstract This work uses a simple low-cost wearable device embedded with discrete thermal sensors to map the breast skin surface temperature. A methodology has been developed to estimate diameter, blood perfusion, metabolic heat generation and location in X, Y, Z coordinate of tumor from this discrete set of data. An interactive 3D thermal tomography was developed which provides a detailed 3D thermal view of the breast anatomy. Using this system, the user can interactively rotate and slice the 3D thermal image of the breast for a detailed study of the tumor. Finite element method (FEM) and an evolution-based inverse method were used for the parameter estimation. The method was first validated using phantom experiments and the results obtained were within an error of 10% (0.005 W cm−3) for heat generation and 15% (0.3 cm) for heater location. Further validation was carried out through clinical trials on 60 human subjects. Estimated blood perfusion rate and metabolic heat generation rate exhibit distinguishable difference between cancerous and non-cancerous breast. Estimated diameter and location of tumor in cancerous breast shows good agreement with the actual clinical reports. We have obtained a sensitivity of 82.78% and specificity of 87.09%. Proposed breast tumor parameter estimation methodology with interactive 3D thermal tomography is a good screening tool for breast cancer detection and also useful for clinicians to find out location including depth.

Funder

Ministry of Electronics and Information technology

Publisher

IOP Publishing

Subject

General Nursing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3