A unified formalism for estimating photon absorbed fractions in spherical biovolumes: analytical equations without fitting parameters

Author:

Sazykina Tatiana GORCID,Kryshev Alexander I

Abstract

Abstract A new analytical formalism, previously developed for estimating electron-absorbed fractions, was extended for estimating photon absorbed fractions in soft-tissue spheres, containing uniformly distributed photon-emitter. Analytical equations were formulated for calculating values of photon-absorbed fractions. The method involves a rescaling procedure with transformation of real biological sizes to unitless effective ones, combining information of photon energy, object’s size, and material. Rescaling was applied to large published datasets of photon absorbed fractions in soft-tissue spheres, computed with Monte Carlo codes. A new effect was demonstrated in which the rescaled data formed a single smooth ‘unified curve’ with saturation. The unified curve for photon absorbed fractions was described analytically, using simple equations without fitting parameters. The new method was tested for a wide range of spheres—from 1 mg up to 1000 kg, and wide range of photon energies—from 0.02 up to 5 MeV. For larger spheres, a close agreement between analytical values and Monte Carlo datasets was demonstrated. For small biovolumes, analytical equations predict higher values than available Monte Carlo data. The unified formalism is now available for direct calculating radiation absorbed fractions in soft-tissue spherical organs and organisms without Monte Carlo codes.

Publisher

IOP Publishing

Subject

General Nursing

Reference22 articles.

1. GEANT4—simulation toolkit;Agostinelli;Nucl Instrum Meth A,2003

2. GEANT4 and its validation;Amako;Nucl. Phys. B,2006

3. An analytical model for calculating internal dose conversion coefficients for non-human biota;Amato;Radiat. Environ. Biophys.,2014

4. Absorbed fractions for photons in ellipsoidal volumes;Amato;Phys. Med. Biol.,2009

5. Absorbed fractions for electrons in ellipsoidal volumes;Amato;Phys. Med. Biol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3