A grayscale compression method to segment bone structures for 2D-3D registration of setup images in non-coplanar radiotherapy

Author:

Song ZhiyueORCID,Li Tantan,Zuo Lijing,Song Yongli,Wei Ran,Dai Jianrong

Abstract

Abstract Purpose. To evaluate the performance of an automated 2D-3D bone registration algorithm incorporating a grayscale compression method for quantifying patient position errors in non-coplanar radiotherapy. Methods. An automated 2D-3D registration incorporating a grayscale compression method to segment bone structures was proposed. Portal images containing only bone structures ( Portal bone ) and digitally reconstructed radiographs containing only bone structures ( DRR bone ) were used for registration. First, the portal image was filtered by a high-pass finite impulse response (FIR) filter. Then the grayscale range of the filtered portal image was compressed. Thresholds were determined based on the difference in gray values of bone structures in the filtered and compressed portal image to obtain Portal bone . Another threshold was applied to generate DRR bone when the CT image uses the ray-casting algorithm to generate DRR images. The compression performance was assessed by registering the DRR bone with the Portal bone obtained by compressing the portal image into various grayscale ranges. The proposed registration method was quantitatively and visually validated using (1) a CT image of an anthropomorphic head phantom and its portal images obtained in different poses and (2) CT images and pre-treatment portal images of 20 patients treated with non-coplanar radiotherapy. Results. Mean absolute registration errors for the best compression grayscale range test were 0.642 mm, 0.574 mm, and 0.643 mm, with calculation times of 50.6 min, 42.2 min, and 49.6 min for grayscale ranges of 0–127, 0–63 and 0–31, respectively. For the accuracy validation (1), the mean absolute registration errors for couch angles 0°, 45°, 90°, 270°, and 315° were 0.694 mm, 0.839 mm, 0.726 mm, 0.833 mm, and 0.873 mm, respectively. Among the six transformation parameters, the translation error in the vertical direction contributed the most to the registration errors. Visual inspection of the patient registration results revealed success in every instance. Conclusions. The implemented grayscale compression method successfully enhances and segments bone structures in portal images, allowing for accurate determination of patient setup errors in non-coplanar radiotherapy.

Funder

CAMS Innovation Fund for Medical Sciences

National Key Research and Development Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3