A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017

Author:

Kleyko DenisORCID,Osipov EvgenyORCID,Wiklund UrbanORCID

Abstract

Abstract Objective: The 2017 PhysioNet/CinC Challenge focused on automatic classification of atrial fibrillation (AF) in short ECGs. This study aimed to evaluate the use of the data and results from the challenge for detection of AF in longer ECGs, taken from three other PhysioNet datasets. Approach: The used data-driven models were based on features extracted from ECG recordings, calculated according to three solutions from the challenge. A Random Forest classifier was trained with the data from the challenge. The performance was evaluated on all non-overlapping 30 s segments in all recordings from three MIT-BIH datasets. Fifty-six models were trained using different feature sets, both before and after applying three feature reduction techniques. Main Results: Based on rhythm annotations, the AF proportion was 0.00 in the MIT-BIH Normal Sinus Rhythm (N = 46083 segments), 0.10 in the MIT-BIH Arrhythmia (N = 2880), and 0.41 in the MIT-BIH Atrial Fibrillation (N = 28104) dataset. For the best performing model, the corresponding detected proportions of AF were 0.00, 0.11 and 0.36 using all features, and 0.01, 0.10 and 0.38 when using the 15 best performing features. Significance: The results obtained on the MIT-BIH datasets indicate that the training data and solutions from the 2017 Physionet/Cinc Challenge can be useful tools for developing robust AF detectors also in longer ECG recordings, even when using a low number of carefully selected features. The use of feature selection allows significantly reducing the number of features while preserving the classification performance, which can be important when building low-complexity AF classifiers on ECG devices with constrained computational and energy resources.

Funder

Swedish Research Council

Publisher

IOP Publishing

Subject

General Nursing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3