Robust algorithm for the detection and classification of QRS complexes with different morphologies using the continuous spline wavelet transform with automatic scale detection

Author:

Martínez-Suárez FrankORCID,Alvarado-Serrano CarlosORCID,Casas OscarORCID

Abstract

Abstract This work presents an algorithm for the detection and classification of QRS complexes based on the continuous wavelet transform (CWT) with splines. This approach can evaluate the CWT at any integer scale and the analysis is not restricted to powers of two. The QRS detector comprises four stages: implementation of CWT with splines, detection of QRS complexes, searching for undetected QRS complexes, and correction of the R wave peak location in detected QRS complexes. After, the onsets and ends of the QRS complexes are detected. The algorithm was evaluated with synthetic ECG and with the manually annotated databases: MIT-BIH Arrhythmia, European ST-T, QT and PTB Diagnostic ECG. Evaluation results of the QRS detector were: MIT-BIH arrhythmia database (109,447 beats analyzed), sensitivity Se = 99.72% and positive predictivity P+ = 99.87%; European ST-T database (790522 beats analyzed), Se = 99.92% and P+ = 99.55% and QT database (86498 beats analyzed), Se = 99.97% and P+ = 99.99%. To evaluate the delineation algorithm of the QRS onset (Qi) and QRS end (J) with the QT and PTB Diagnostic ECG databases, the mean and standard deviations of the differences between the automatic and manual annotated location of these points were calculated. The standard deviations were close to the accepted tolerances for deviations determined by the CSE experts. The proposed algorithm is robust to noise, artifacts and baseline drifts, classifies QRS complexes, automatically selects the CWT scale according to the sampling frequency of the ECG record used, and adapts to changes in the heart rate, amplitude and morphology of QRS complexes.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías

Agencia Estatal de Investigación

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3