Computed chest radiography for total body irradiation: image quality and clinical feasibility

Author:

Bouchez QuentinORCID,Vandenbroucke Dirk,Pittomvils Geert,Boterberg Tom,van Eijkeren Marc,Leblans Paul,Vanderstraeten Barbara

Abstract

Abstract Objective. In myeloablative total body irradiation (TBI), lung shielding blocks are used to reduce the dose to the lungs and hence decrease the risk of radiation pneumonitis. Some centers are still using mega-Volt (MV) imaging with dedicated silver halide-based films during simulation and treatment for lung delineation and position verification. However, the availability of these films has recently become an issue. This study examines the clinical performance of a computed radiography (CR) solution in comparison to radiographic films and potential improvement of image quality by filtering and post-processing. Approach. We compared BaFBrI-based CR plates to radiographic films. First, images of an aluminum block were analyzed to assess filter impact on scatter reduction. Secondly, a dedicated image quality phantom was used to assess signal linearity, signal-to-noise ratio (SNR), contrast and spatial resolution. Ultimately, a clinical performance study involving two impartial observers was conducted on an anthropomorphic chest phantom, employing visual grading analysis (VGA). Various filter materials and positions as well as post-processing were examined, and the workflow between CR and film was compared. Main results. CR images exhibited high SNR and linearity but demonstrated lower spatial and contrast resolution when compared to film. However, filtering improved contrast resolution and SNR, while positioning filters inside the cassette additionally enhanced sharpness. Image processing improved VGA scores, while additional filtering also resulted in higher spine visibility scores. CR shortened TBI simulation by over 10 minutes for one patient, alongside a dose reduction by order of 0.1 Gy. Significance. This study highlights potential advantages of shifting from conventional radiographic film to CR for TBI. Overall, CR with the incorporation of processing and filtering proves to be suitable for TBI chest imaging. When compared to radiographic film, CR offers advantages such as reduced simulation time and dose delivery, re-usability of image plates and digital workflow integration.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3