Fuzzy lattices assisted EJAYA Q-learning for automated pulmonary diseases classification

Author:

Kukker AmitORCID,Sharma Rajneesh,Pandey Gaurav,Faseehuddin Mohammad

Abstract

Abstract This work proposes a novel technique called Enhanced JAYA (EJAYA) assisted Q-Learning for the classification of pulmonary diseases, such as pneumonia and tuberculosis (TB) sub-classes using chest x-ray images. The work introduces Fuzzy lattices formation to handle real time (non-linear and non-stationary) data based feature extraction using Schrödinger equation. Features based adaptive classification is made possible through the Q-learning algorithm wherein optimal Q-values selection is done via EJAYA optimization algorithm. Fuzzy lattice is formed using x-ray image pixels and lattice Kinetic Energy (K.E.) is calculated using the Schrödinger equation. Feature vector lattices having highest K.E. have been used as an input features for the classifier. The classifier has been employed for pneumonia classification (normal, mild and severe) and Tuberculosis detection (presence or absence). A total of 3000 images have been used for pneumonia classification yielding an accuracy, sensitivity, specificity, precision and F-scores of 97.90%, 98.43%, 97.25%, 97.78% and 98.10%, respectively. For Tuberculosis 600 samples have been used. The achived accuracy, sensitivity, specificity, precision and F-score are 95.50%, 96.39%, 94.40% 95.52% and 95.95%, respectively. Computational time are 40.96 and 39.98 s for pneumonia and TB classification. Classifier learning rate (training accuracy) for pneumonia classes (normal, mild and severe) are 97.907%, 95.375% and 96.391%, respectively and for tuberculosis (present and absent) are 96.928% and 95.905%, respectively. The results have been compared with contemporary classification techniques which shows superiority of the proposed approach in terms of accuracy and speed of classification. The technique could serve as a fast and accurate tool for automated pneumonia and tuberculosis classification.

Publisher

IOP Publishing

Reference33 articles.

1. Patented therapeutic drug delivery strategies for targeting pulmonary diseases;Thakur;Expert opinion on therapeutic patents,2020

2. Pulmonary diseases decision support system using deep learning approach;Al-Issa;Comput. Mater. Contin,2022

3. Community-acquired pneumonia and hospital-acquired pneumonia;Lanks;Medical Clinics,2019

4. The diagnosis and treatment of tuberculosis;Suárez;Deutsches Aerzteblatt International,2019

5. WHO global progress report on tuberculosis elimination;Harding;The Lancet Respiratory Medicine,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3