Six degrees of freedom intrafraction cranial motion detection using a novel capacitive monitoring technique: evaluation with human subjects

Author:

Sadeghi PORCID,Bastin-Decoste D,Robar J L

Abstract

Abstract The purpose of this work is to introduce and evaluate a capacitive monitoring array capable of continuous 6DOF cranial motion detection during high precision radiotherapy. The ring-shaped capacitive array consists of four equally sized conductive sensors positioned at the cranial vertex. The system is modular, non-contact, and provides continuous motion information through the thermoplastic immobilization mask without relying on skin monitoring or use of ionizing radiation. The array performance was evaluated through a volunteer study with a cohort of twenty-five individuals. The study was conducted in a linac suite and the volunteers were fitted with an S-frame thermoplastic mask. Each volunteer took part in one data acquisition session per day for three consecutive days. During the data acquisition, the conductive array was translated and rotated relative to their immobilized cranium in 1-millimetre and 1-degree steps to simulate cranial motion. Capacitive signals were collected at each position at a frequency of 20 Hz. The data from the first acquisition session was then used to train a classifier model and establish calibration equations. The classifier and calibration equations were then applied to data from the subsequent acquisition sessions to evaluate the system performance. The trained classifiers had an average success rate of 92.6% over the volunteer cohort. The average error associated with calibration had a mean value below 0.1 mm or 0.1 deg for all six motions. The capacitive array system provides a novel method to detect translational and rotational cranial motion through a thermoplastic mask.

Funder

Atlantic Canada Opportunities Agency

Atlantic Innovation Fund

BrainLab AG

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3