FMD-UNet: fine-grained feature squeeze and multiscale cascade dilated semantic aggregation dual-decoder UNet for COVID-19 lung infection segmentation from CT images

Author:

Wang WenfengORCID,Mao QiORCID,Tian Yi,Zhang Yan,Xiang Zhenwu,Ren Lijia

Abstract

Abstract With the advancement of computer-aided diagnosis, the automatic segmentation of COVID-19 infection areas holds great promise for assisting in the timely diagnosis and recovery of patients in clinical practice. Currently, methods relying on U-Net face challenges in effectively utilizing fine-grained semantic information from input images and bridging the semantic gap between the encoder and decoder. To address these issues, we propose an FMD-UNet dual-decoder U-Net network for COVID-19 infection segmentation, which integrates a Fine-grained Feature Squeezing (FGFS) decoder and a Multi-scale Dilated Semantic Aggregation (MDSA) decoder. The FGFS decoder produces fine feature maps through the compression of fine-grained features and a weighted attention mechanism, guiding the model to capture detailed semantic information. The MDSA decoder consists of three hierarchical MDSA modules designed for different stages of input information. These modules progressively fuse different scales of dilated convolutions to process the shallow and deep semantic information from the encoder, and use the extracted feature information to bridge the semantic gaps at various stages, this design captures extensive contextual information while decoding and predicting segmentation, thereby suppressing the increase in model parameters. To better validate the robustness and generalizability of the FMD-UNet, we conducted comprehensive performance evaluations and ablation experiments on three public datasets, and achieved leading Dice Similarity Coefficient (DSC) scores of 84.76, 78.56 and 61.99% in COVID-19 infection segmentation, respectively. Compared to previous methods, the FMD-UNet has fewer parameters and shorter inference time, which also demonstrates its competitiveness.

Funder

Training Funding Program for The Youth Scholars of Shanghai Universities

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3