Spatiotemporal denoising of low-dose cardiac CT image sequences using RecycleGAN

Author:

Zhou ShiweiORCID,Yang Jinyu,Konduri Krishnateja,Huang Junzhou,Yu Lifeng,Jin MingwuORCID

Abstract

Abstract Electrocardiogram (ECG)-gated multi-phase computed tomography angiography (MP-CTA) is frequently used for diagnosis of coronary artery disease. Radiation dose may become a potential concern as the scan needs to cover a wide range of cardiac phases during a heart cycle. A common method to reduce radiation is to limit the full-dose acquisition to a predefined range of phases while reducing the radiation dose for the rest. Our goal in this study is to develop a spatiotemporal deep learning method to enhance the quality of low-dose CTA images at phases acquired at reduced radiation dose. Recently, we demonstrated that a deep learning method, Cycle-Consistent generative adversarial networks (CycleGAN), could effectively denoise low-dose CT images through spatial image translation without labeled image pairs in both low-dose and full-dose image domains. As CycleGAN does not utilize the temporal information in its denoising mechanism, we propose to use RecycleGAN, which could translate a series of images ordered in time from the low-dose domain to the full-dose domain through an additional recurrent network. To evaluate RecycleGAN, we use the XCAT phantom program, a highly realistic simulation tool based on real patient data, to generate MP-CTA image sequences for 18 patients (14 for training, 2 for validation and 2 for test). Our simulation results show that RecycleGAN can achieve better denoising performance than CycleGAN based on both visual inspection and quantitative metrics. We further demonstrate the superior denoising performance of RecycleGAN using clinical MP-CTA images from 50 patients.

Funder

National Heart, Lung, and Blood Institute

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3