Design of electrical impedance spectroscopy sensing surgical drill using computational modelling and experimental validation

Author:

Devaraj HarshavardhanORCID,K Murphy EthanORCID,J Halter RyanORCID

Abstract

Abstract Electrical Impedance Spectroscopy (EIS) sensing surgical instruments could provide valuable and real-time feedback to surgeons about hidden tissue boundaries, therefore reducing the risk of iatrogenic injuries. In this paper, we present an EIS sensing surgical drill as an example instrument and introduce a strategy to optimize the mono-polar electrode geometry using a finite element method (FEM)-based computational model and experimental validation. An empirical contact impedance model and an adaptive mesh refinement protocol were developed to accurately preserve the behaviour of sensing electrodes as they approach high impedance boundaries. Specifically, experiments with drill-bit, cylinder, and conical geometries suggested a 15%–35% increase in resistance as the sensing electrode approached a high impedance boundary. Simulations achieved a maximum mean experiment-to-simulation mismatch of +1.7% for the drill-bit and +/−11% range for other electrode geometries. The simulations preserved the increase in resistance behaviour near the high impedance boundary. This highly accurate simulation framework allows us a mechanism for optimizing sensor geometry without costly experimental evaluation.

Funder

National Institute of Dental and Craniofacial Research

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3