Abstract
Abstract
Purpose. This study aims to evaluate the performance of a commercial 1.5 T MR-Linac by analyzing its patient-specific quality assurance (QA) data collected during one full year of clinical operation. Methods and Materials. The patient-specific QA system consisted of offline delivery QA (DQA) and online calculation-based QA. Offline DQA was based on ArcCHECK-MR combined with an ionization chamber. Online QA was performed using RadCalc that calculated and compared the point dose calculation with the treatment planning system (TPS). A total of 24 patients with 189 treatment fractions were enrolled in this study. Gamma analysis was performed and the threshold that encompassed 95% of QA results (T95) was reported. The plan complexity metric was calculated for each plan and compared with the dose measurements to determine whether any correlation existed. Results. All point dose measurements were within 5% deviation. The mean gamma passing rates of the group data were found to be 96.8 ± 4.0% and 99.6 ± 0.7% with criteria of 2%/2mm and 3%/3mm, respectively. T95 of 87.4% and 98.2% was reported for the overall group with the two passing criteria, respectively. No statistically significant difference was found between adaptive treatments with adapt-to-position (ATP) and adapt-to-shape (ATS), whilst the category of pelvis data showed a better passing rate than other sites. Online QA gave a mean deviation of 0.2 ± 2.2%. The plan complexity metric was positively correlated with the mean dose difference whilst the complexity of the ATS cohort had larger variations than the ATP cohort. Conclusions. A patient-specific QA system based on ArcCHECK-MR, solid phantom and ionization chamber has been well established and implemented for validation of treatment delivery of a 1.5 T MR-Linac. Our QA data obtained over one year confirms that good agreement between TPS calculation and treatment delivery was achieved.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献