Automated measurements of morphological parameters of muscles and tendons

Author:

Jabbar Shaima IbraheemORCID,Day Charles,Chadwick Edward

Abstract

Abstract Capturing accurate representations of musculoskeletal system morphology is a core aspect of musculoskeletal modelling of the upper limb. Measurements of important geometric parameters such as the thickness of muscles and tendons are key descriptors of the underlying morphology. Though the measurement of those parameters can be estimated manually using cadaveric measurements, this is not an appropriate technique for constructing a personalised musculoskeletal model for an individual. Therefore, this work proposes and applies a novel method for evaluating the geometric parameters of the upper extremity based on automated ultrasound image analysis. The proposed algorithm involves advanced techniques from artificial intelligence and image processing to outline the necessary details of the musculoskeletal morphology from appropriately enhanced ultrasound images. The ultrasound images were collected from 25 healthy volunteers from different parts of upper limb. The results were compared with measurements of a manual evaluation. Our results showed that the average discrepancy between the manual and automatic measures of triceps thickness is 0.115 mm. This represents improved accuracy compared to several current approaches.

Publisher

IOP Publishing

Subject

General Nursing

Reference22 articles.

1. Recent progress in automatic processing of skeletal muscle morphology using ultrasound: a brief review;Zhou;Current Medical Imaging Reviews,2018

2. Mechanical behaviour of tendon;Abrahams;Medical & Biological Engineering,1967

3. Parameters for modelling the upper extremity;Veeger;Journal Biomechanics,1997

4. Enhancement of panoramic musculoskeletal ultrasound image based on fuzzy technique;Jabbar,2019

5. Comparing human skeletal muscle architectural parameters of cadavers with in vivo ultrasonographic measurements;Martin;Journal of Anatomy,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3