The value of using heterogeneous detector groups for the development of time-of-flight (TOF) positron emission tomography (PET) systems

Author:

Xin ZhiqiangORCID,Kao Chien-MinORCID,Liu Yuqing,Chen Xun,Zhang LabaoORCID,Wu Peiheng,Xie Qingguo

Abstract

Abstract Objective. Much recent attention on positron emission tomography (PET) is the development of time-of-flight (TOF) systems with ever-improving coincidence time resolution (CTR). This is because, when all other factors remain the same, a better CTR leads to images of better statistics and effectively increases the sensitivity of the system. However, detector designs that aggressively improve the CTR often compromise the detection efficiency (DE) and offset the benefit gained. Under this circumstance, in developing a TOF PET system it may be beneficial to employ heterogeneous detector groups to balance the overall CTR and DE of the system. In this study, we examine the potential value of this system design strategy by considering two-dimensional systems that assume several representative ways of mixing two detector groups. Approach. The study is based on computer simulation and specifically considers medium time-resolution (MTR) detectors that have a 528 ps CTR and high time-resolution (HTR) detectors that have a 100 ps CTR and a DE that is 0.7 times that of the MTR detector. We examine contrast recovery, noise, and subjective quality of the resulting images under various ways of mixing the MTR and HTR detectors. Main results. With respect to the traditional configuration that adopts only the HTR detectors, symmetric heterogeneous configurations may offer comparable or better images while using considerably fewer HTRs. On the other hand, asymmetric heterogeneous configurations may allow the use of only a few HTRs for improving image quality locally. Significance. This study demonstrates the value of the proposed system-level design strategy of using heterogeneous detector groups for achieving high effective system sensitivity by factoring into the tradeoff between the CTR and DE of the detector.

Funder

National Natural Science Foundation of China

The start-up fund of the USTC “Total solid angle PET-EPR multi-modality intelligent imaging”.

The Mobility Programme of the Sino-German Center for Research Promotion

Publisher

IOP Publishing

Subject

General Nursing

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3