X-ray energy spectrum estimation based on a virtual computed tomography system

Author:

Higuchi Takayuki,Haga AkihiroORCID

Abstract

Abstract This paper presents a method for estimating the x-ray energy spectrum for computed tomography (CT) in the diagnostic energy range from the reconstructed CT image itself. To this end, a virtual CT system was developed, and datasets, including CT images for the Gammex phantom labeled by the corresponding energy spectra, were generated. Using these datasets, an artificial neural network (ANN) model was trained to reproduce the energy spectrum from the CT values in the Gammex inserts. In the actual application, an aluminum-based bow-tie filter was used in the virtual CT system, and an ANN model with a bow-tie filter was also developed. Both ANN models without/with a bow-tie filter can estimate the x-ray spectrum within the agreement, which is defined as one minus the absolute error, of more than 80% on average. The agreement increases as the tube voltage increases. The estimation was occasionally inaccurate when the amount of noise on the CT image was considerable. Image quality with a signal-to-noise ratio of more than 10 for the basis material of the Gammex phantom was required to predict the spectrum accurately. Based on the experimental data acquired from Activion16 (Canon Medical System, Japan), the ANN model with a bow-tie filter produced a reasonable energy spectrum by simultaneous optimization of the shape of the bow-tie filter. The present method requires a CT image for the Gammex phantom only, and no special setup, thus it is expected to be readily applied in clinical applications, such as beam hardening reduction, CT dose management, and material decomposition, all of which require exact information on the x-ray energy spectrum.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Nursing

Reference36 articles.

1. Tensorflow: large-scale machine learning on heterogeneous distributed systems;Abadi,2016

2. Spectrum reconstruction from dose measurements as a linear inverse problem;Armbruster;Phys. Med. Biol.,2004

3. Monte Carlo simulation of a computed tomography x-ray tube;Bazalova;Phys. Med. Biol.,2007

4. Method for evaluating bow tie filter angle-dependent attenuation in CT: theory and simulation results;Boone;Med. Phys.,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3