Development of handheld induction heaters for magnetic fluid hyperthermia applications and in-vitro evaluation on ovarian and prostate cancer cell lines

Author:

Castro-Torres Jorge LORCID,Méndez JanetORCID,Torres-Lugo MadelineORCID,Juan EduardoORCID

Abstract

Abstract Objective: Magnetic fluid hyperthermia (MFH) is a still experimental technique found to have a potential application in the treatment of cancer. The method aims to reach around 41 °C–47 °C in the tumor site by exciting magnetic nanoparticles with an externally applied alternating magnetic field (AMF), where cell death is expected to occur. Applying AMFs with high spatial resolution is still a challenge. The AMFs from current and prospective MFH applicators cover relatively large areas; being not suitable for patients having metallic implants near the treatment area. Thus, there will be a clinical need for smaller magnetic field applicators. To this end, a laparoscopic induction heater (LIH) and a transrectal induction heater (TRIH) were developed. Methods: Miniature ‘pancake’ coils were wound and inserted into 3D printed enclosures. Ovarian (SKOV-3, A2780) and prostate (PC-3, LNCaP) cancer cell lines were used to evaluate the instruments’ capabilities in killing cancer cells in vitro, using Synomag®-D nanoparticles as the heat mediators. NIH3T3 normal cell lines were also used with both devices to observe if these cells tolerated the conditions applied. Results: Magnetic field intensities reached by the LIH and TRIH were 42.6 kA m−1 at 326 kHz and 26.3 kA m−1 at 303 kHz, respectively. Temperatures reached in the samples were 41 °C by the LIH and 43 °C by the TRIH. Both instruments successfully accomplished killing cancer cells, with minimal effects on normal cells. Conclusion: This work presents the first line of handheld medical induction heaters and have the potential to be a complement to existing cancer therapies. Significance: These instruments could enable the development of MFH modalities that will facilitate the clinical translation of this thermal treatment.

Funder

National Science Foundation

National Institutes of Health

Publisher

IOP Publishing

Subject

General Nursing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in magnetic induction hyperthermia;Frontiers in Bioengineering and Biotechnology;2024-08-05

2. Analytical, Experimental and Computational Analysis of Heat Released from a Hot Mug of Tea Coupled with Convection, Conduction, and Radiation Thermal Energy Modes;International Journal of Heat and Technology;2024-04-30

3. Important Advances in Antibacterial Nanoparticle-Mediated Photodynamic Therapy;Recent Advances in Bacterial Biofilm Studies - Formation, Regulation, and Eradication in Human Infections;2024-02-28

4. PFKFB3 Regulates the Growth and Migration of Ovarian Cancer Cells through Pyroptosis and Warburg Effect Progression;Journal of Environmental Pathology, Toxicology and Oncology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3