Abstract
Abstract
The dose rate distributions delivered to 55 prostate and head & neck (H&N) cancer patients treated with a helical TomoTherapy (HT) system were resolved and assessed with regard to pitch and field width defined during treatment planning. Statistical analysis of the studied cases showed that the median treatment delivery time was 4.4 min and 6.3 min for the prostate and H&N cases, respectively. Dose rate volume histogram data for the studied cases showed that the 25% and 12% of the volume of the planning target volumes of the prostate and H&N cases are irradiated with a dose rate of greater or equal to 1 Gy min−1. Quartile dose rate (QDR) data confirmed that in HT, where the target is irradiated in slices, most of the dose is delivered to each voxel of the target when it travels within the beam. Analysis of the planning data from all cases showed that this lasts for 68 s (median value). QDRs results showed that using the 2.5 cm field width, 75% of the prescribed dose is delivered to target voxels with a median dose rate of at least 3.2 Gy min−1 and 4.5 Gy min−1, for the prostate and H&N cases, respectively. Systematically higher dose rates were observed for the H&N cases due to the shallower depths of the lesions in this anatomical site. Delivered dose rates were also found to increase with field width and pitch setting, due to the higher output of the system which, in general, results in accordingly decreased total treatment time. The biological effect of the dose rate findings of this work needs to be further investigated using in-vitro studies and clinical treatment data.