Soft electrodes for simultaneous bio-potential and bio-impedance study of the face

Author:

Levit BaraORCID,Funk Paul FORCID,Hanein YaelORCID

Abstract

Abstract The human body’s vascular system is a finely regulated network: blood vessels can change in shape (i.e. constrict, or dilate), their elastic response may shift and they may undergo temporary and partial blockages due to pressure applied by skeletal muscles in their immediate vicinity. Simultaneous measurement of muscle activation and the corresponding changes in vessel diameter, in particular at anatomical regions such as the face, is challenging, and how muscle activation constricts blood vessels has been experimentally largely overlooked. Here we report on a new electronic skin technology for facial investigations to address this challenge. The technology consists of screen-printed dry carbon electrodes on soft polyurethane substrate. Two dry electrode arrays were placed on the face: One array for bio-potential measurements to capture muscle activity and a second array for bio-impedance. For the bio-potential signals, independent component analysis (ICA) was used to differentiate different muscle activations. Four-contact bio-impedance measurements were used to extract changes (related to artery volume change), as well as beats per minute (BPM). We performed concurrent bio-potential and bio-impedance measurements in the face. From the simultaneous measurements we successfully captured fluctuations in the superficial temporal artery diameter in response to facial muscle activity, which ultimately changes blood flow. The observed changes in the face, following muscle activation, were consistent with measurements in the forearm and were found to be notably more intricate. Both at the arm and the face, a clear increase in the baseline impedance was recorded during muscle activation (artery narrowing), while the impedance changes signifying the pulse had a clear repetitive trend only at the forearm. These results reveal the direct connection between muscle activation and the blood vessels in their vicinity and start to unveil the complex mechanisms through which facial muscles might modulate blood flow and possibly affect human physiology.

Funder

Israel Science Foundation

Ministry of Culture and Sport

H2020 European Research Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3