Representation of single neuron dynamics using 1-D and 2-D Discrete dynamical systems

Author:

Zeki MustafaORCID,Kapçak Sinan

Abstract

Abstract Biological neurons are typically modeled using the Hodgkin-Huxley formalism, which requires significant computational power to simulate. However, since realistic neural network models require thousands of synaptically coupled neurons, a faster approach is needed. Discrete dynamical systems are promising alternatives to continuous models, as they can simulate neuron activity in far fewer steps. Many existing discrete models are based on Poincaré-map-like approaches, which trace periodic activity at a cross section of the cycle. However, this approach is limited to periodic solutions. Biological neurons have many key properties beyond periodicity, such as the minimum applied current required for a resting cell to generate an action potential. To address these properties, we propose a discrete dynamical system model of a biological neuron that incorporates the threshold dynamics of the Hodgkin-Huxley model, the logarithmic relationship between applied current and frequency, modifications to relaxation oscillators, and spike-frequency adaptation in response to modulatory hyperpolarizing currents. It is important to note that several critical parameters are transferred from the continuous model to our proposed discrete dynamical system. These parameters include the membrane capacitance, leak conductance, and maximum conductance values for sodium and potassium ion channels, which are essential for accurately simulating the behavior of biological neurons. By incorporating these parameters into our model, we can ensure that it closely approximates the continuous model’s behavior, while also offering a more computationally efficient alternative for simulating neural networks.

Publisher

IOP Publishing

Subject

General Nursing

Reference33 articles.

1. A universal model for spike-frequency adaptation;Benda;Neural Comput.,2003

2. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input;Burkitt;Biol. Cybern.,2006

3. Applications of the poincare mapping technique to analysis of neuronal dynamics;Channell;Neurocomputing,2007

4. The hodgkin-huxley equations;Ermentrout,2010b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3