Electrocardiography signal compression using non-decimated stationary wavelet transform-based technique

Author:

Sharma NeenuORCID,Sunkaria Ramesh Kumar

Abstract

Abstract Background. In telecardiology, the bio-signal acquisition processing and communication for clinical purposes occupies larger storage and significant bandwidth over a communication channel. Electrocardiograph (ECG) compression with effective reproductivity is highly desired. In the present work, a compression technique for ECG signals with less distortion by using a non-decimated stationary wavelet with a run-length encoding scheme has been proposed. Method. In the present work non-decimated stationary wavelet transform (NSWT) method has been developed to compress the ECG signals. The signal is subdivided into N levels with different thresholding values. The wavelet coefficients having values larger than the threshold are evaluated and the remaining are suppressed. In the presented technique, the biorthogonal (bior) wavelet is employed as it improves the compression ratio as well percentage root means square ratio (PRD) when compared to the existing method and exhibits improved results. After pre-processing, the coefficients are subjected to the Savitzky-Golay filter to remove corrupted signals. The wavelet coefficients are then quantized using dead-zone quantization, which eliminates values that are close to zero. To encode these values, a run-length encoding (RLE) scheme is applied, resulting in compressed ECG signals. Results. The presented methodology has been evaluated on the MITDB arrhythmias database which contains 4800 ECG fragments from forty-eight clinical records. The proposed technique has achieved an average compression ratio of 33.12, PRD of 1.99, NPRD of 2.53, and QS of 16.57, making it a promising approach for various applications. Conclusion. The proposed technique exhibits a high compression ratio and reduces distortion compared to the existing method.

Publisher

IOP Publishing

Subject

General Nursing

Reference47 articles.

1. Tunable Q-wavelet based ECG data compression with validation using cardiac arrhythmia patterns;Jha;Biomed. Signal Process. Control,2021

2. Design of a biorthogonal wavelet transform based R-peak detection and data compression scheme for implantable cardiac pacemaker systems;Kumar;J. Med. Syst.,2018

3. The impact of the MIT-BIH arrhythmia database;Moody;IEEE Eng in Med and Biol,2001

4. Cardiac arrhythmias classification and compression using a hybrid technique;Al-Busaidi;Doctoral Consortium on Biomedical Engineering Systems and Technologies,2015

5. Compression, denoising and classification of ECG signals using the discrete wavelet transform and deep convolutional neural networks;Chowdhury,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3