System requirements to improve adaptive 4-dimensional computed tomography (4D CT) imaging

Author:

Morton Natasha,O’Brien Ricky,Keall Paul,Reynolds TessORCID

Abstract

Abstract Four-Dimensional Computed Tomography (4D CT) is of increasing importance in stereotactic body radiotherapy (SBRT) treatments affected by respiratory motion. However, 4D CT images are commonly impacted by irregular breathing, causing image artifacts that can propagate through to treatment, negatively effecting local control. REspiratory Adaptive CT (REACT) is a real-time gating method demonstrated to reduce motion artifacts by avoiding imaging during irregular respiration. Despite artifact reduction seen through in silico and clinical phantom-based studies, REACT has not been able to remove all artifacts. Here, we explore several hardware and software latencies (gantry rotation time, couch shifts, acquisition delays and phase calculation method) inherently linked to REACT and 4D CT in general and investigate their contribution to artifacts beyond those caused by irregular breathing. Imaging was simulated using the digital extended cardiac-torso (XCAT) phantom for fifty patient-measured respiratory traces. Imaging protocols included conventional cine 4D CT and five REACT scans with systematically varied parameters to test the effect of different latencies on artifacts. Artifacts were quantified by comparing the image normalized cross correlation across couch transition points and determining the volume error compared to a static phantom ground truth both as a total error and individually across pixel rows in the main plane of motion. Artifacts were determined for each lung, the whole heart and lung tumour and were compared back to conventional 4D CT and REACT with standard clinical scanning parameters. The gantry rotation time and acquisition delay were found to have the largest impact on reducing image artifacts and should be the focus of future development. The phase calculation method was also found to influence motion artifacts and should potentially be assessed on a patient-to-patient basis. Finally, the correlation between an increase in artifacts and baseline drift suggests that longer scan times allowing drift to occur may impact image quality.

Funder

National Health and Medical Research Council

Cancer Australia: Priority Driven Collaborative Cancer Research Scheme

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3