Self-made transparent optoacoustic detector for measurement of skin lesion thickness in vivo

Author:

Fedorov Kukk AnatolyORCID,Blumenröther Elias,Roth BernhardORCID

Abstract

Abstract In skin cancer diagnosis and treatment, one of the key factors is tumor depth, which is connected to the severity and the required excision depth. Optoacoustical (OA) imaging is a relatively popular technique that provides information based on the optical absorption of the sample. Although often demonstrated with ex vivo measurements or in vivo imaging on parts of small animals, in vivo measurements on humans are more challenging. This is presumably because it is too time consuming and the required excitation pulse energies and their number exceed the allowed maximum permissible exposure (MPE). Here, we demonstrate thickness measurements with a transparent optoacoustical detector of different suspicious skin lesions in vivo on patients. We develop the signal processing technique to automatically convert the raw signal into thickness via deconvolution with the impulse response function. The transparency of the detector allows optical excitation with the pulsed laser to be performed perpendicularly on the lesion, in contrast to the conventional illumination from the side. For validation, the measured results were compared to the histological thickness determined after excision. We show that this simple transparent detector allows to determine the thickness of a lesion and thus, aid the dermatologist to estimate the excision depth in the future.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Nursing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3