Development of a computational phantom for validation of automated noise measurement in CT images

Author:

Anam ChoirulORCID,Sutanto Heri,Adi Kusworo,Budi Wahyu Setia,Muhlisin Zaenul,Haryanto Freddy,Matsubara KosukeORCID,Fujibuchi Toshioh,Dougherty Geoff

Abstract

Abstract The purpose of this study was to develop a computational phantom for validation of automatic noise calculations applied to all parts of the body, to investigate kernel size in determining noise, and to validate the accuracy of automatic noise calculation for several noise levels. The phantom consisted of objects with a very wide range of HU values, from −1000 to +950. The incremental value for each object was 10 HU. Each object had a size of 15 × 15 pixels separated by a distance of 5 pixels. There was no dominant homogeneous part in the phantom. The image of the phantom was then degraded to mimic the real image quality of CT by convolving it with a point spread function (PSF) and by addition of Gaussian noise. The magnitude of the Gaussian noises was varied (5, 10, 25, 50, 75 and 100 HUs), and they were considered as the ground truth noise (NG). We also used a computational phantom with added actual noise from a CT scanner. The phantom was used to validate the automated noise measurement based on the average of the ten smallest standard deviations (SD) from the standard deviation map (SDM). Kernel sizes from 3 × 3 up to 27 × 27 pixels were examined in this study. A computational phantom for automated noise calculations validation has been successfully developed. It was found that the measured noise (NM) was influenced by the kernel size. For kernels of 15 × 15 pixels or smaller, the NM value was much smaller than the NG. For kernel sizes from 17 × 17 to 21 × 21 pixels, the NM value was about 90% of NG. And for kernel sizes of 23 × 23 pixels and above, NM is greater than NG. It was also found that even with small kernel sizes the relationship between NM and NG is linear with R2 more than 0.995. Thus accurate noise levels can be automatically obtained even with small kernel sizes without any concern regarding the inhomogeneity of the object.

Funder

the Riset Publikasi Internasional Bereputasi Tinggi (RPIBT), Diponegoro University

Publisher

IOP Publishing

Subject

General Nursing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development, validation, and simplification of a scanner‐specific CT simulator;Medical Physics;2023-09

2. Analytical covariance estimation for iterative CT reconstruction methods;Biomedical Physics & Engineering Express;2022-03-11

3. Implementation of a selective mean filter algorithm to reduce noise in computed radiography images;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE AND SCHOOL ON PHYSICS IN MEDICINE AND BIOSYSTEM (ICSPMB): Physics Contribution in Medicine and Biomedical Applications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3