Synthesis of urea-modified magnetic nanocomposites iron oxide/carbon as a potential biomaterial produced by arc discharge in liquid medium and its in-vivo toxicity assessment

Author:

Saraswati Teguh EndahORCID,Sari Fitri Nela,Patimah Patimah,Handayani Nestri,Herbani Yuliati,Nagatsu MasaakiORCID

Abstract

Abstract Carbon-encapsulated magnetic nanoparticles are promising candidate materials for drug-delivery applications. However, due to their hydrophobic and aggregation properties, which indicate lower biocompatibility, proper surface modification of the carbon-based material is required. In the present study, we present the facile route to producing biocompatible magnetic nanocomposite iron oxide/carbon using the liquid medium arc-discharge method. The medium used was ethanol 50% with urea added in various concentrations. Using x-ray diffraction (XRD), the nanocomposite produced was confirmed to have a crystalline structure with distinctive peaks representing iron oxide, graphite, and urea. Fourier transform infrared spectroscopy (FTIR) analysis of the nanocomposite produced in ethanol/acetic acid or ethanol/urea medium shows several vibrations, including Fe–O, C–H, C–O, C=C, C–H, O–H, and C–N, which are intended to be the attached aromatic oxygen- and amine-containing functional groups. The nanocomposite particle was observed to have a core–shell structure that had an iron-compound core coated in a carbon shell possibly modified by polymeric urea groups. The presence of these groups suggested that the nanocomposite would be biocompatible with biological entities in the living body. Lastly, the prepared nanocomposite Fe3O4/C-urea underwent an in-vivo acute toxicity assay to confirm its toxicity. The highest dose of 2000 mg kg−1 BW in this study caused no deaths in the test animals even though cell damages were observed, especially in the liver. This highest dose is considered a maximum tolerable dose and is defined as practically non-toxic.

Funder

Ministry of Research and Technology/National Research and Innovation Agency

Publisher

IOP Publishing

Subject

General Nursing

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3