A 3D printed phantom to assess MRI geometric distortion

Author:

Ramachandran PrabhakarORCID,Noble Christopher,Langton Christian,Perrett Ben,Cox Joshua,Chapman Mike,McGill George

Abstract

Abstract Geometric distortions in magnetic resonance can introduce significant uncertainties into applications such as radiotherapy treatment planning and need to be assessed as part of a comprehensive quality assurance program. We report the design, fabrication, and imaging of a custom 3D printed unibody MR distortion phantom along with quantitative image analysis. Methods: The internal cavity of the phantom is an orthogonal three-dimensional planar lattice, composed of 3 mm diameter rods spaced equidistantly at a 20 mm centre-centre offset repeating along the X, Y, and Z axes. The phantom featured an overall length of 308.5 mm, a width of 246 mm, and a height of 264 mm with lines on the external surface for phantom positioning matched to external lasers. The MR phantom was 3D printed in Nylon-12 using an advancement on traditional selective laser sintering (SLS) (HP Jet Fusion 3D—4200 machine). The phantom was scanned on a Toshiba Aquilion CT scanner to check the integrity of the 3D print and correct for any resultant issues. The phantom was then filled with NiSO4 solution and scanned on a 3T PET-MR Siemens scanner for selected T1 and T2 sequences, from which distortion vectors were generated and analysed using in-house software written in Python. Results: All deviations of the node positions from the print design were less than 1 mm, with an average displacement of 0.228 mm. The majority of the deviations were smaller than the 0.692 mm pixel size for this dataset. Conclusion: A customised 3D printed MRI-phantom was successfully printed and tested for assessing geometric distortion on MRI scanners. 3D printed phantoms can be considered for clinics wishing to assess geometric distortions under specific conditions, but require resources for design, fabrication, commissioning, and verification.

Publisher

IOP Publishing

Subject

General Nursing

Reference21 articles.

1. Advances in Clinical PET/MRI Instrumentation

2. Role and future of MRI in radiation oncology;Das;Br. J. Radiol.,2019

3. Emerging role of MRI in radiation therapy;Chandarana;J. Magn. Reson. Imaging,2018

4. Anvendelse af MR-skanning [Use of magnetic resonance imaging];Chabanova;Ugeskr Laeger.,2014

5. simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning;Paulson;Med. Phys.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3