Generative adversarial networks improve interior computed tomography angiography reconstruction

Author:

Ketola Juuso H JORCID,Heino Helinä,Juntunen Mikael A KORCID,Nieminen Miika TORCID,Siltanen SamuliORCID,Inkinen Satu IORCID

Abstract

Abstract In interior computed tomography (CT), the x-ray beam is collimated to a limited field-of-view (FOV) (e.g. the volume of the heart) to decrease exposure to adjacent organs, but the resulting image has a severe truncation artifact when reconstructed with traditional filtered back-projection (FBP) type algorithms. In some examinations, such as cardiac or dentomaxillofacial imaging, interior CT could be used to achieve further dose reductions. In this work, we describe a deep learning (DL) method to obtain artifact-free images from interior CT angiography. Our method employs the Pix2Pix generative adversarial network (GAN) in a two-stage process: (1) An extended sinogram is computed from a truncated sinogram with one GAN model, and (2) the FBP reconstruction obtained from that extended sinogram is used as an input to another GAN model that improves the quality of the interior reconstruction. Our double GAN (DGAN) model was trained with 10 000 truncated sinograms simulated from real computed tomography angiography slice images. Truncated sinograms (input) were used with original slice images (target) in training to yield an improved reconstruction (output). DGAN performance was compared with the adaptive de-truncation method, total variation regularization, and two reference DL methods: FBPConvNet, and U-Net-based sinogram extension (ES-UNet). Our DGAN method and ES-UNet yielded the best root-mean-squared error (RMSE) (0.03 ± 0.01), and structural similarity index (SSIM) (0.92 ± 0.02) values, and reference DL methods also yielded good results. Furthermore, we performed an extended FOV analysis by increasing the reconstruction area by 10% and 20%. In both cases, the DGAN approach yielded best results at RMSE (0.03 ± 0.01 and 0.04 ± 0.01 for the 10% and 20% cases, respectively), peak signal-to-noise ratio (PSNR) (30.5 ± 2.6 dB and 28.6 ± 2.6 dB), and SSIM (0.90 ± 0.02 and 0.87 ± 0.02). In conclusion, our method was able to not only reconstruct the interior region with improved image quality, but also extend the reconstructed FOV by 20%.

Funder

Business Finland

Jane ja Aatos Erkon Säätiö

Academy of Finland

Teknologiateollisuuden 100-Vuotisjuhlasäätiö

Tauno Tönning Foundation

Publisher

IOP Publishing

Subject

General Nursing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3