A computer-aided tool for automatic volume estimation of hematoma using non-contrast brain CT scans

Author:

Nag Manas KORCID,Koley Subhranil,Sadhu Anup K,Dutta Pranab K,Holsouser Barbara,Ashwal Stephen,Ghosh Nirmalya

Abstract

Abstract The computation of hematoma volume is the key parameter for treatment planning of Intracerebral hemorrhage (ICH). Non-contrast computed tomography (NCCT) imaging is routinely used for the diagnosis of ICH. Hence, the development of computer-aided tools for three-dimensional (3D) computed tomography (CT) image analysis is essential to estimate the gross volume of hematoma. We propose a methodology for automatic estimation of the hematoma volume from 3D CT volumes. Our approach integrates two different methods, multiple abstract splitting (MAS) and seeded region growing (SRG) to develop a unified hematoma detection pipeline from pre-processed CT volumes. The proposed methodology was tested on 80 cases. The volume was estimated from the delineated hematoma region, validated against the ground-truth volumes, and compared with those obtained from the conventional ABC/2 approach. We also compared our results with the U-Net model (supervised technique) to show the applicability of the proposed method. The volume calculated from manually segmented hematoma was considered the ground truth. The R 2 correlation coefficient between the volume obtained from the proposed algorithm and the ground truth is 0.86, which is equivalent to the R 2 value resulting from the comparison between the volume calculated by ABC/2 and the ground truth. The experimental results of the proposed unsupervised approach are comparable to the deep neural architecture (U-Net models). The average computation time was 132.76 ± 14 seconds. The proposed methodology provides a fast and automatic estimation of hematoma volume, which is similar to the baseline user-guided ABC/2 approach. Implementation of our method does not demand a high-end computational setup. Thus, recommended in clinical practice for computer-assistive volume estimation of hematoma from 3D CT volumes and can be implemented in a simple computer system.

Funder

Council of Scientific and Industrial Research, India

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3