Development of a low-cost, compact, wireless, 16 - channel biopotential data acquisition, signal conditioning and arbitrary waveform stimulator

Author:

Halder Rajat SuvraORCID,Basumatary BijitORCID,Sahani AshishORCID

Abstract

Abstract The health and fitness of the human body rely heavily on physiological parameters. These parameters can be measured using various tools such as ECG, EMG, EEG, EOG, among others, to obtain real-time physiological data. Analysing the bio-signals obtained from these measurements can provide valuable information that can be used to improve health-care in terms of observation, diagnosis, and treatment. In bio-signal pattern recognition applications, more channels provide multiple information simultaneously. Different biosignal acquisition devices are available in the market, most of which are designed for specific signals like ECG, EMG, EEG etc The gain of the amplifiers and frequency of the filters are designed as per the targeted signals; due to which one device cannot be used for other signals. Also, most of the systems are wired system which is not comfortable for animal studies. In this paper, a low-cost, compact, wireless, 16 channel biopotential data acquisition system with integrated electrical stimulator is designed and implemented. There are several novel and flexible design approaches were incorporated in the proposed design like (1) It has user selectable digital filter in each channel based on the signal frequencies like ECG, EMG, EEG, EOG. The same system will be used to acquire different signals simultaneously. (2) It has variable gain with a configurable analog bandpass filter. (3) It can acquire signals from 4 patients simultaneously. (4) The system is capable to acquire signal from both two-electrode as well as three-electrode configurations. (5) It has integrated stimulator with trapezoidal, charge-balanced, biphasic stimulus output with near zero DC level and user selectable pulse duration or frequency of the stimulus. The developed system has the ability to acquire and transmit data wirelessly in real-time at a high transfer rate. To validate the performance of the system, tests were conducted on the acquired signals using a simulator.

Publisher

IOP Publishing

Subject

General Nursing

Reference30 articles.

1. Introduction to biopotential acquisition;Yazıcıoğlu,2009

2. EMG and EOG artifacts in brain computer interface systems: a survey;Fatourechi;Clinical neurophysiology,2007

3. EMG signal classification for human computer interaction: a review;Ahsan;European Journal of Scientific Research,2009

4. Designing a reconfigurable biopotential amplifiers for medical instrumentation course;Kuo,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3