Segmenting 3D geometry of left coronary artery from coronary CT angiography using deep learning for hemodynamic evaluation

Author:

Sadid Sadman R,Kabir Mohammed S,Mahmud Samreen T,Islam Md Saiful,Islam A H M Waliul,Arafat M TarikORCID

Abstract

Abstract While coronary CT angiography (CCTA) is crucial for detecting several coronary artery diseases, it fails to provide essential hemodynamic parameters for early detection and treatment. These parameters can be easily obtained by performing computational fluid dynamic (CFD) analysis on the 3D artery geometry generated by CCTA image segmentation. As the coronary artery is small in size, manually segmenting the left coronary artery from CCTA scans is a laborious, time-intensive, error-prone, and complicated task which also requires a high level of expertise. Academics recently proposed various automated segmentation techniques for combatting these issues. To further aid in this process, we present CoronarySegNet, a deep learning-based framework, for autonomous and accurate segmentation as well as generation of 3D geometry of the left coronary artery. The design is based on the original U-net topology and includes channel-aware attention blocks as well as deep residual blocks with spatial dropout that contribute to feature map independence by eliminating 2D feature maps rather than individual components. We trained, tested, and statistically evaluated our model using CCTA images acquired from various medical centers across Bangladesh and the Rotterdam Coronary Artery Algorithm Evaluation challenge dataset to improve generality. In empirical assessment, CoronarySegNet outperforms several other cutting-edge segmentation algorithms, attaining dice similarity coefficient of 0.78 on an average while being highly significant (p < 0.05). Additionally, both the 3D geometries generated by machine learning and semi-automatic method were statistically similar. Moreover, hemodynamic evaluation performed on these 3D geometries showed comparable results.

Funder

ICT Ministry, Bangladesh

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3