Evaluation of temporal, spatial and spectral filtering in CSP-based methods for decoding pedaling-based motor tasks using EEG signals

Author:

Blanco-Díaz Cristian FelipeORCID,Guerrero-Mendez Cristian DavidORCID,Delisle-Rodriguez DenisORCID,Jaramillo-Isaza SebastiánORCID,Ruiz-Olaya Andrés FelipeORCID,Frizera-Neto AnselmoORCID,Ferreira de Souza AlbertoORCID,Bastos-Filho TeodianoORCID

Abstract

Abstract Stroke is a neurological syndrome that usually causes a loss of voluntary control of lower/upper body movements, making it difficult for affected individuals to perform Activities of Daily Living (ADLs). Brain-Computer Interfaces (BCIs) combined with robotic systems, such as Motorized Mini Exercise Bikes (MMEB), have enabled the rehabilitation of people with disabilities by decoding their actions and executing a motor task. However, Electroencephalography (EEG)-based BCIs are affected by the presence of physiological and non-physiological artifacts. Thus, movement discrimination using EEG become challenging, even in pedaling tasks, which have not been well explored in the literature. In this study, Common Spatial Patterns (CSP)-based methods were proposed to classify pedaling motor tasks. To address this, Filter Bank Common Spatial Patterns (FBCSP) and Filter Bank Common Spatial-Spectral Patterns (FBCSSP) were implemented with different spatial filtering configurations by varying the time segment with different filter bank combinations for the three methods to decode pedaling tasks. An in-house EEG dataset during pedaling tasks was registered for 8 participants. As results, the best configuration corresponds to a filter bank with two filters (8–19 Hz and 19–30 Hz) using a time window between 1.5 and 2.5 s after the cue and implementing two spatial filters, which provide accuracy of approximately 0.81, False Positive Rates lower than 0.19, and Kappa index of 0.61. This work implies that EEG oscillatory patterns during pedaling can be accurately classified using machine learning. Therefore, our method can be applied in the rehabilitation context, such as MMEB-based BCIs, in the future.

Funder

Fundação de Amparo à Pesquisa e Inovação do Espírito Santo

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3