Electrocardiogram morphological arrhythmia classification using fuzzy entropy-based feature selection and optimal classifier

Author:

Chaubey KrishnakantORCID,Saha Seemanti

Abstract

Abstract Electrocardiogram (ECG) signal analysis has become significant in recent years as cardiac arrhythmia shares a major portion of all mortality worldwide. To detect these arrhythmias, computer-assisted algorithms play a pivotal role as beat-by-beat monitoring of holter ECG signals is required. In this paper, a morphological arrhythmia classification algorithm has been proposed to classify seven different ECG beats, namely Normal Beat (N), Left Bundle Branch Block Beat (L), Right Bundle Branch Block Beat (R), Atrial Premature Contraction Beat (A), Premature Ventricular Contraction Beat (V), Fusion of Normal and Ventricle Beat (F) and Pace Beat (P). A novel feature set of 25 attributes has been extracted from each ECG beat and ranked using the Fuzzy Entropy-based feature selection (FEBFS) technique. In addition, two distinct classifiers, support vector machine with radial basis function as the kernel (SVM-RBF) and weighted K-nearest neighbor (WKNN), are used to categorize ECG beats, and their performances are also evaluated after adjusting vital parameters. The performance of classifiers is compared for four different ECG beat segmentation approaches and further analyzed using three similarity measurement techniques and two fuzzy entropy methods while feature selection. The classifier results are also cross-validated using a 10-fold cross-validation scheme, and the MIT-BIH Arrhythmia Database has been used to validate the proposed work. After selecting 21 highly ranked features, WKNN achieves the best results with the nearest neighbor value K = 3 and cityblock distance metrics, with Average Sensitivity (Sen) = 94.89%, Positive Predictivity (Ppre) = 97.13%, Specificity (Spe) = 99.72%, F1 Score = 95.95%, and Overall Accuracy (Acc) = 99.15%. The novelty of this work relies on formulating a unique feature set, including proposed symbolic features, followed by the FEBFS technique making this algorithm efficient and reliable for morphological arrhythmia classification. The above results demonstrate that the proposed algorithm performs better than many existing state-of-the-art works.

Publisher

IOP Publishing

Subject

General Nursing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3