Synovial macrophages in cartilage destruction and regeneration—lessons learnt from osteoarthritis and synovial chondromatosis

Author:

Li Yingjie,Zhou YinghongORCID,Wang Yifan,Crawford Ross,Xiao YinORCID

Abstract

Abstract Inflammation is a critical process in disease pathogenesis and the restoration of tissue structure and function, for example, in joints such as the knee and temporomandibular. Within the innate immunity process, the body’s first defense response in joints when physical and chemical barriers are breached is the synovial macrophages, the main innate immune effector cells, which are responsible for triggering the initial inflammatory reaction. Macrophage is broadly divided into three phenotypes of resting M0, pro-inflammatory M1-like (referred to below as M1), and anti-inflammatory M2-like (referred to below as M2). The synovial macrophage M1-to-M2 transition can affect the chondrogenic differentiation of mesenchymal stem cells (MSCs) in joints. On the other hand, MSCs can also influence the transition between M1 and M2. Failure of the chondrogenic differentiation of MSCs can result in persistent cartilage destruction leading to osteoarthritis. However, excessive chondrogenic differentiation of MSCs may cause distorted cartilage formation in the synovium, which is evidenced in the case of synovial chondromatosis. This review summarizes the role of macrophage polarization in the process of both cartilage destruction and regeneration, and postulates that the transition of macrophage phenotype in an inflammatory joint environment may play a key role in determining the fate of joint cartilage.

Funder

Queensland University of Technology

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3