PDMS-based porous membrane for medical applications: design, development, and fabrication

Author:

Keshtiban Mohsen MashhadiORCID,Zand Mahdi MoghimiORCID,Ebadi AmiraliORCID,Azizi Zahra

Abstract

Abstract Organ-on-a-chip (OoC) is one of the most popular microfluidic chips and possesses various industrial, biomedical, and pharmaceutical applications. So far, many types of OoCs with different applications have been fabricated, most of which contain porous membranes useful as cell culture substrates. One of the challenging parts of OoC’s chips is porous membrane fabrication, making it a complex and sensitive process, which is an issue in microfluidic design. These membranes are made of various materials, the same as biocompatible polymer polydimethylsiloxane (PDMS). Besides OoC, these PDMS membranes can be applied in diagnosis, cell separating, trapping, and sorting. In the present study, a new approach has been presented to design and fabricate an efficient porous membrane in terms of time and cost. The fabrication method has fewer steps than previous techniques and employs more conventional approaches. The presented method for membrane fabrication is functional and a novel way to continue producing this product with a single mold and peeling off the membrane on each try. Merely one sacrificial layer (polyvinyl alcohol) and an O2 plasma surface treatment have been used for fabrication. Surface modification and sacrificial layer on the mold ease the peeling of the PDMS membrane. Transferring process of the membrane to the OoC device is explained, and a filtration test is presented to show the functionality of the PDMS membranes. Cell viability is investigated by MTT assay to ensure the PDMS porous membranes are suitable for microfluidic devices. Also, cell adhesion, cell count, and confluency are analyzed, showing almost the same results for the PDMS membranes and the control samples.

Funder

Tehran University of Medical Sciences

University of Tehran

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3