Heterogeneous pHPMA hydrogel promotes neuronal differentiation of bone marrow derived stromal cells in vitro and in vivo

Author:

Rybachuk OksanaORCID,Savytska Natalia,Pinet Éric,Yaminsky Yurii,Medvediev Volodymyr

Abstract

Abstract Synthetic hydrogels composed of polymer pore frames are commonly used in medicine, from pharmacologically targeted drug delivery to the creation of bioengineering constructions used in implantation surgery. Among various possible materials, the most common are poly-[N(2-hydroxypropyl)methacrylamide] (pHPMA) derivatives. One of the pHPMA derivatives is biocompatible hydrogel, NeuroGel. Upon contact with nervous tissue, the NeuroGel’s structure can support the chemical and physiological conditions of the tissue necessary for the growth of native cells. Owing to the different pore diameters in the hydrogel, not only macromolecules, but also cells can migrate. This study evaluated the differentiation of bone marrow stromal cells (BMSCs) into neurons, as well as the effectiveness of using this biofabricated system in spinal cord injury in vivo. The hydrogel was populated with BMSCs by injection or rehydration. After cultivation, these fragments (hydrogel + BMSCs) were implanted into the injured rat spinal cord. Fragments were immunostained before implantation and seven months after implantation. During cultivation with the hydrogel, both variants (injection/rehydration) of the BMSCs culture retained their viability and demonstrated a significant number of Ki-67-positive cells, indicating the preservation of their proliferative activity. In hydrogel fragments, BMSCs also maintained their viability during the period of cocultivation and were Ki-67-positive, but in significantly fewer numbers than in the cell culture. In addition, in fragments of hydrogel with grafted BMSCs, both by the injection or rehydration versions, we observed a significant number up to 57%–63.5% of NeuN-positive cells. These results suggest that the heterogeneous pHPMA hydrogel promotes neuronal differentiation of bone marrow-derived stromal cells. Furthermore, these data demonstrate the possible use of NeuroGel implants with grafted BMSCs for implantation into damaged areas of the spinal cord, with subsequent nerve fiber germination, nerve cell regeneration, and damaged segment restoration.

Funder

Romodanov Neurosurgery Institute National Acad. Med. Sci.

Bogomolets National Medical University

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3