Phospholipid and menthol based nanovesicle impregnated transdermal patch for nutraceutical delivery to diminish folate and iron deficiency

Author:

Kumari Durga,Bhatia Eshant,Awasthi Lisha,Banerjee Rinti

Abstract

Abstract Adequate micronutrient availability is particularly important in women, children and infants. Micronutrient deficiencies are the major cause of maternal and neonatal morbidity. To overcome this, WHO recommends the use of folic acid and iron supplements for reducing anaemia and improving the health of the mother and infants. Oral intake of supplements for nutritional deficiencies are associated with gastric irritation, nausea, constipation and non-patient compliance due to associated taste. In case of absorption deficiency nutrients administered orally pass-through digestive tract unabsorbed. In the present study, we propose transdermal delivery of nutraceuticals to avoid the limitations associated with oral intake. Transdermal delivery has limited use because of the closely packed barrier of the stratum corneum that limits the permeability of molecules across skin. Here, we have used biomimetic nanovesicles impregnated in transdermal patches for delivery of folic acid and iron. Nanovesicles are prepared using an abundant component of cell membrane, phosphatidyl choline and a permeation enhancer. Further these nanovesicles are impregnated onto polyacrylate based transdermal patch. In vitro studies have shown the ability of nanovesicles to fluidise skin lipids and penetrate into deeper skin. In vivo application of transdermal patches gradually increased the systemic concentration of nutraceuticals. Post application of the patch, five-fold increase in plasma folic acid concentration and 1.5-fold increase in plasma iron concertation was achieved in 6 h. Developed nanovesicles were compatible with keratinocytes and fibroblasts as tested in vitro and have the potential to enhance the cellular uptake of molecules. Skin irritation studies on human volunteers have confirmed the safety of nutraceutical loaded nanovesicles. Thus, the developed nutraceutical loaded transdermal patches provide a potential, easy to use platform for micronutrient delivery in infants and mothers.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3