Melt-extruded biocompatible surgical sutures loaded with microspheres designed for wound healing

Author:

Deng XORCID,Gould M LORCID,Katare R GORCID,Ali M AORCID

Abstract

Abstract Sutures are commonly used in surgical procedures and have immense potential for direct drug delivery into the wound site. However, incorporating active pharmaceutical ingredients into the sutures has always been challenging as their mechanical strength deteriorates. This study proposes a new method to produce microspheres-embedded surgical sutures that offer adequate mechanical properties for effective wound healing applications. The study used curcumin, a bioactive compound found in turmeric, as a model drug due to its anti-inflammatory, antioxidant, and anti-bacterial properties, which make it an ideal candidate for a surgical suture drug delivery system. Curcumin-loaded microspheres were produced using the emulsion solvent evaporation method with polyvinyl alcohol (PVA) as the aqueous phase. The microspheres’ particle sizes, drug loading (DL) capacity, and encapsulation efficiency (EE) were investigated. Microspheres were melt-extruded with polycaprolactone and polyethylene glycol via a 3D bioplotter, followed by a drawing process to optimise the mechanical strength. The sutures’ thermal, physiochemical, and mechanical properties were investigated, and the drug delivery and biocompatibility were evaluated. The results showed that increasing the aqueous phase concentration resulted in smaller particle sizes and improved DL capacity and EE. However, if PVA was used at 3% w/v or below, it prevented aggregate formation after lyophilisation, and the average particle size was found to be 34.32 ± 12.82 μm. The sutures produced with the addition of microspheres had a diameter of 0.38 ± 0.02 mm, a smooth surface, minimal tissue drag, and proper tensile strength. Furthermore, due to the encapsulated drug-polymer structure, the sutures exhibited a prolonged and sustained drug release of up to 14 d. Microsphere-loaded sutures demonstrated non-toxicity and accelerated wound healing in the in vitro studies. We anticipate that the microsphere-loaded sutures will serve as an excellent biomedical device for facilitating wound healing.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3