Enhancement of nerve regeneration through schwann cell-mediated healing in a 3D printed polyacrylonitrile conduit incorporating hydrogel and graphene quantum dots: a study on rat sciatic nerve injury model

Author:

Hoveizi ElhamORCID

Abstract

Abstract Despite recent technological advancements, effective healing from sciatic nerve damage remains inadequate. Cell-based therapies offer a promising alternative to autograft restoration for peripheral nerve injuries, and 3D printing techniques can be used to manufacture conduits with controlled diameter and size. In this study, we investigated the potential of Wharton’s jelly-derived mesenchymal stem cells (WJMSCs) differentiated into schwann cells, using a polyacrylonitrile (PAN) conduit filled with fibrin hydrogel and graphene quantum dots (GQDs) to promote nerve regeneration in a rat sciatic nerve injury model. We investigated the potential of WJMSCs, extracted from the umbilical cord, to differentiate into schwann cells and promote nerve regeneration in a rat sciatic nerve injury model. WJMSCs were 3D cultured and differentiated into schwann cells within fibrin gel for two weeks. A 3 mm defect was created in the sciatic nerve of the rat model, which was then regenerated using a conduit/fibrin, conduit covered with schwann cells in fibrin/GQDs, GQDs in fibrin, and a control group without any treatment (n = 6/group). At 10 weeks after transplantation, motor and sensory functions and histological improvement were assessed. The WJMSCs were extracted, identified, and differentiated. The differentiated cells expressed typical schwann cell markers, S100 and P75. In vivo investigations established the durability and efficacy of the conduit to resist the pressures over two months of implantation. Histological measurements showed conduit efficiency, schwann cell infiltration, and association within the fibrin gel and lumen. Rats treated with the composite hydrogel-filled PAN conduit with GQDs showed significantly higher sensorial recovery than the other groups. Histological results showed that this group had significantly more axon numbers and remyelination than others. Our findings suggest that the conduit/schwann approach has the potential to improve nerve regeneration in peripheral nerve injuries, with future therapeutic implications.

Funder

Shahid Chamran University of Ahvaz

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3