Crosslinked modified decellularized rabbit conjunctival stroma for reconstruction of tissue-engineered conjunctiva in vitro

Author:

Chen FangyuanORCID,Li Chaoqun,Liu Jingwen,Dong Yuying,Chen Jian,Zhou Qing

Abstract

Abstract Conjunctival reconstruction is an essential part of ocular surface restoration, especially in severe conjunctival disorders. Decellularized conjunctival tissues have been used in tissue engineering. In this study, we investigated the feasibility of constructing tissue-engineered conjunctiva using stem cell (human amniotic epithelial cells, hAECs), and cross-linked modified decellularized rabbit conjunctival stroma (DRCS-Asp-hEGF), and decellularized rabbit conjunctiva stroma (DRCS). With phospholipase A2 and sodium dodecyl, DRCS were nearly DNA-free, structurally intact and showed no cytotoxic effects in vitro, as confirmed by DNA quantification, histology, and immunofluorescence. The results of Fourier transform infrared, Alcian blue staining and human epidermal growth factor (hEGF) release assays showed that DRCS-Asp-hEGF was successfully prepared via crosslinking with aspartic acid (Asp) and modified by hEGF at pH 7.7. The hAECs were positive for octamer-binding transcription factor-4 and ABCG2 cell markers. The hAECs were directly placed on the DRCS and DRCS-Asp-hEGF for five days respectively. Tissue-engineered conjunctiva was constructed in vitro for five days, and the fluorescence staining results showed that hAECs grew in monolayers on DRCS-Asp-hEGF and DRCS. Flow cytometry results showed that compared with DRCS, the number of apoptotic cells stained in DRCS-Asp-hEGF was small, 86.70 ± 0.79% of the cells survived, and 87.59 ± 1.43% of the cells were in the G1 phase of DNA synthesis. Electron microscopy results showed that desmosome junction structures, which were similar to the native conjunctival tissue, were formed between cells and the matrix in the DRCS-Asp-hEGF.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3