Abstract
Abstract
In the present study, ultrathin poly(L-lactic acid) (PLLA) films were fabricated using the spin-coating technique. Physicochemical properties of the formed materials, including their morphology, thickness, transparency, and contact angle, have been studied. We determined that the morphology of PLLA films could be regulated by changing the polymer concentration and humidity. By altering the humidity, microporous and flat PLLA films can be fabricated. The obtained samples were subsequently used for culturing mesenchymal stem cells and fibroblasts. It has been determined that cells effectively adhered to prepared films and formed on them a monolayer culture with high viability. It has been shown that PLLA films are suitable for the entrapment of curcumin (up to 12.1 μm cm−2) and provide its sustained release in solutions isotonic to blood plasma. The obtained PLLA films appear to be prospective materials for potential application in regenerative medicine as part of cell-containing tissue engineered dressings for chronic wound treatment.
Funder
Belarusian Republican Foundation for Fundamental Research
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献