Abstract
Abstract
Controllable regulation of stem cell differentiation is a critical concern in stem cell-based regenerative medicine. In particular, there are still great challenges in controlling the directional differentiation of neural stem cells (NSCs) into neurons. Herein, we developed a novel linear-branched poly(β-amino esters) (S4-TMPTA-BDA-DT, STBD) through a two-step reaction. The synthesized linear-branched polymers possess multiple positively charged amine terminus and degradable intermolecular ester bonds, thus endowing them with excellent properties such as high gene load, efficient gene delivery, and effective gene release and transcription in cells. In the mCherry transfection test, a high transfection efficiency of approximately 70% was achieved in primary NSCs after a single transfection. Moreover, STBD also showed high biocompatibility to NSCs without disturbing their viability and neural differentiation. With the high gene delivery property, STBD is capable of delivering siRNA (shSOX9) expression plasmid into NSCs to significantly interfere with the expression of SOX9, thus enhancing the neuronal differentiation and maturation of NSCs. The STBD/DNA nano-polyplex represents a powerful non-viral approach of gene delivery for manipulating the differentiation of stem cells, showing broad application prospects in NSC-based regenerative therapy for treating neurodegenerative diseases.
Funder
Science and Technology Project of Suzhou
National Natural Science Foundation of China
National Key Research and Development Program
Chinese Academy of Sciences
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献