Linear-branched poly(β-amino esters)/DNA nano-polyplexes for effective gene transfection and neural stem cell differentiation

Author:

Cao YuhengORCID,He Haobo,Cao Kaili,Liu YongyangORCID,Huang Dehua,Li Tuanwei,Chen GuangcunORCID

Abstract

Abstract Controllable regulation of stem cell differentiation is a critical concern in stem cell-based regenerative medicine. In particular, there are still great challenges in controlling the directional differentiation of neural stem cells (NSCs) into neurons. Herein, we developed a novel linear-branched poly(β-amino esters) (S4-TMPTA-BDA-DT, STBD) through a two-step reaction. The synthesized linear-branched polymers possess multiple positively charged amine terminus and degradable intermolecular ester bonds, thus endowing them with excellent properties such as high gene load, efficient gene delivery, and effective gene release and transcription in cells. In the mCherry transfection test, a high transfection efficiency of approximately 70% was achieved in primary NSCs after a single transfection. Moreover, STBD also showed high biocompatibility to NSCs without disturbing their viability and neural differentiation. With the high gene delivery property, STBD is capable of delivering siRNA (shSOX9) expression plasmid into NSCs to significantly interfere with the expression of SOX9, thus enhancing the neuronal differentiation and maturation of NSCs. The STBD/DNA nano-polyplex represents a powerful non-viral approach of gene delivery for manipulating the differentiation of stem cells, showing broad application prospects in NSC-based regenerative therapy for treating neurodegenerative diseases.

Funder

Science and Technology Project of Suzhou

National Natural Science Foundation of China

National Key Research and Development Program

Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3