LBL assembly of Ag@Ti3C2T X and chitosan on PLLA substrate to enhance antibacterial and biocompatibility

Author:

Wang HaiboORCID,Dong AoORCID,Hu Kun,Sun Weiwei,Wang Jundong,Han Lu,Mo LixinORCID,Li Luhai,Zhang Wei,Guo Yan,Zhu Li,Cui Fuzhai,Wei Yen

Abstract

Abstract Poly L-lactic acid (PLLA) is a non-toxic, biocompatible degradable polymer material with excellent mechanical properties after moulding. However, it faces challenges in the use of biomedical materials because of its intolerance to bacteria. Here, we use an easy-to-operate method to prepare a composite multilayer membrane: PLLA membrane was used as substrates to assemble positively charged chitosan and negatively charged Ag@MXene on the surface using the layer-by-layer (LBL) method. The assembly process was detected by fluorescein isothiocyanate-labelled chitosan and the thickness of the coating multilayer was also detected as 210.0 ± 12.1 nm for P-M membrane and 460.5 ± 26.5 nm for P-Ag@M membrane. The surface self-assembled multilayers exhibited 91.27% and 96.11% growth inhibition ratio against Escherichia coli and Staphylococcus aureus strains under 808 nm near-infrared laser radiation with a synergistic photothermal antibacterial effect. Furthermore, best biocompatibility of P-M and P-Ag@M membranes compare to PLLA membrane motivated us to further explore its application in biomedical materials.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3