Abstract
Abstract
As a typical metal-organic framework (MOF), Mg-MOF74 can release biocompatible Mg2+ when the framework is degraded, and it has the potential to be used as filler in the field of bone tissue engineering. However, Mg-MOF74 has poor stability in aqueous environment and limited antibacterial ability, which limit its further development and applications. In this work, MgCu-MOF74 particles with different Cu content were synthesized through a facile one-step hydrothermal method. The physicochemical properties and water stability of the synthesized powders were characterized. The osteogenic potential of the MgCu-MOF74 particles on human osteogenic sarcoma cells (SaOS-2) was evaluated. The hybrid MgCu-MOF74 exhibited favorable water stability. These results indicated that MgCu-MOF74 enhanced cellular viability, alkaline phosphatase levels, collagen (COL) synthesis and osteogenesis-related gene expression. Moreover, the samples doped with Cu2+ were more sensitive to the acidic microenvironment produced by bacteria, and exhibited stronger antibacterial ability than Mg-MOF74. In conclusion, MgCu-MOF-74 with good water stability, osteogenic ability and antibacterial ability, which could be attributed to the doping of Cu2+. Hence, MgCu-MOF74 shows great potential as a novel medical bio-functional fillers for the treatment of bone defects.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of Central South University
Changsha Municipal Natural Science Foundation
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献