Material modifications enhancing the antibacterial properties of two biodegradable poly(3-hydroxybutyrate) implants

Author:

Ferlic P WORCID,Nogler M,Weinberg A M,Kühn K D,Liebensteiner M,Coraça-Huber D C

Abstract

Abstract The aim of this study was to evaluate the antimicrobial efficacy of adding a gentamicin palmitate (GP) coating and zirconium dioxide (ZrO2) to biodegradable poly(3-hydroxybutyrate) (PHB) to reduce biofilm formation. Cylindrical pins with and without a coating were incubated in Müller-Hinton broth inoculated with 2 × 105 colony-forming units (CFU) ml-1 of Staphylococcus aureus for 2 d or 7 d, then sonicated to disrupt biofilms. Pure PHB (PHB + GP) and PHB pins with ZrO2 added (PHBzr + GP) were coated with GP and compared with PHB pins lacking a coating (PHB). Cells (CFU) were counted to quantify the number of bacteria in the biofilm and a cell proliferation assay was employed to evaluate metabolic activity, and scanning electron microscopy (SEM) was performed to visualize the structure of the biofilm. After 2 d of incubation there were significantly more cells in biofilms on PHB pins than PHB + GP and PHBzr + GP pins (p < 0.0001), and cells in the sonication fluid obtained from GP-coated pins exhibited significantly lower metabolic activity than cells from uncoated PHB pins (p < 0.0001). After 7 d of incubation metabolic activity was lowest for PHBzr + GP, with significant differences between PHB and PHBzr + GP (p = 0.001). SEM revealed more cells attached to the surface, and more structured biofilms, on pins without a coating. Coating pins with GP significantly reduced early biofilm formation on PHB implants. This could lower the potential risk of surgical site infections when using PHB implants. Addition of ZrO2 might further enhance the antibacterial properties. Such modification of the implant material should therefore be considered when developing new biodegradable PHB implants.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3