Abstract
Abstract
Magnesium (Mg) alloys have attracted attention as biodegradable metals, but the details of their corrosion behavior under biological environment have not been elucidated. Previous studies have suggested that diffusion through blood flow may influence Mg corrosion. Therefore, to understand the degradation behaviors of Mg, we analyzed insoluble salt precipitation associated with Mg corrosion in model tissue with different diffusion rates. A pure Mg specimen was immersed into a model tissue prepared with cell culture medium supplemented by a thickener at a different concentration (0.2%–0.5%) to form the gel. Micro-focus x-ray computed tomography of the gel was performed to observe gas cavity formation around the specimen. The insoluble salt layer formed on the specimen surface were analyzed by scanning electron microscopy with energy-dispersive x-ray spectroscopy, and Raman spectroscopy. As results, gas cavity formation was observed for all specimens. At day 7, the gas cavity volume was the highest at 0.5% thickener gel followed by 0.3% thickener gel. The insoluble salts were classified into three types based on their morphology; plate-like, granular-like, and crater-like salts. The crater-like salts were observed to cover 16.8 ± 3.9% of the specimen surface immersed in the 0.5% thickener gel, at the specimen area contacted to the gas cavity. The crater-like salts were composed by Mg hydroxide and carbonate from the deepest to the top layer. In plate-like or granular-like salts, Mg carbonate was formed in the deepest layer, but phosphates and carbonates, mainly containing calcium not Mg, were formed on the surface layer. In conclusion, the increase in the thickener concentration increased the gas cavity volume contacting to the specimen surface, resulting in the increase in precipitation of Mg hydroxide and carbonate, composing crater-like salts. Mg hydroxide and carbonate precipitation suggests the local increase in OH− concentration, which may be attributed to the decrease in diffusion rate.
Funder
Grants-in-Aid for Scientific Research
Program Search and Promotion Project ‘Kakehashi’
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献