Promotion of osteointegration under diabetic conditions by a silk fibroin coating on 3D-printed porous titanium implants via a ROS-mediated NF-κB pathway

Author:

Ma Xiang-Yu,Ma Tian-Cheng,Feng Ya-Fei,Xiang Geng,Lei Wei,Zhou Da-Peng,Yu Hai-Long,Xiang Liang-BiORCID,Wang Lin

Abstract

Abstract Clinical evidence indicates the compromised application of titanium implants (TIs) in diabetics, associated with reactive oxygen species (ROS) overproduction at the bone-implant interface. Silk fibroin (SF) has displayed impressive biocompatibility in the application of biomedical material and optimal anti-diabetic effects in oriental medicine. We proposed that SF-coated titanium implants (STIs) could alleviate diabetes-induced compromised osteointegration, which has rarely been reported before. To confirm this hypothesis and explore the underlying mechanisms, rat osteoblasts cultured on 3-dimensional (3D) -printed titanium implants (TIs) and STIs were subjected to normal serum (NS), diabetic serum (DS), DS with N-acetyl-L-cysteine (a ROS inhibitor) or SN50 (an NF-κB inhibitor). An in vivo study was performed on diabetic sheep with TIs or STIs implanted into bone defects on the crista iliaca. The results demonstrated that ROS overproduction induced by diabetes lead to osteoblast dysfunctions and cellular apoptosis on the TI substrate, associated with the activation of an NF-κB signaling pathway in osteoblasts. Importantly, the STI substrate significantly attenuated ROS production and NF-κBp65 phosphorylation, thereby ameliorating the osteoblast biological dysfunctions. These results were further confirmed in vivo by the improved osteointegration of the STIs, as evidenced by Micro-CT and histological examinations compared with those of TIs. These results demonstrated that the ROS-mediated NF-κB signaling pathway played a crucial role in diabetes-induced implant destabilization. Importantly, the SF coating, as a promising material for biomaterial-engineering, markedly improved the clinical treatment effect of TIs under diabetic conditions, possibly associated with the suppression of the NF-κB pathway.

Funder

Research Fund for the National Natural Science Foundation of China

Liao Ning Province Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3